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Prediction of steady-state flow of real gases in randomly heterogeneous
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Abstract

We consider steady-state flow of real gases through bounded, randomly heterogeneous porous media. Such flow is described
by a nonlinear partial differential equation with the random coefficient (medium’s permeability) and source terms subject
to randomly prescribed boundary conditions. Prior to applying stochastic analysis, the problem is linearized by means of
the Kirchhoff transformation which allows us to obtain the exact expressions for an effective (upscaled) gas permeability.
In particular, for one-, two-, and three-dimensional mean uniform flows in infinite, statistically homogeneous and isotropic
domains the resulting effective permeability is given by harmonic, geometric, and arithmetic averages, respectively. The
influence of statistical anisotropy of the random permeability field and domain’s boundaries on the effective gas permeability
is also investigated. ©1999 Elsevier Science B.V. All rights reserved.

Keywords:Gas flow; Porous media; Stochastic

1. Introduction

The ability of a porous medium to transmit fluids is commonly referred to as medium’s permeability or hydraulic
conductivity. Permeability of many natural formations (such as oil and gas reservoirs, groundwater aquifers, etc.) has
been found to vary, continuously and/or discretely, over many orders of magnitude on a variety of scales. Permeability
data are at best known at selected locations and depend on the scale (support volume) and mode (instrumentation
and procedure) of measurement. The available data are often prone to experimental and interpretive uncertainty, and
estimating permeability at points where it is not measured introduces additional errors. These errors and uncertainties
render permeability random and the corresponding flow equations stochastic.

In recent decades, geostatistics has emerged as a prevailing method to deal with the uncertain nature of permeabil-
ity. According to this approach, the available permeability data measured at selected locations can be viewed as a
particular realization from a sampling space. The sampling space is characterized by a joint multivariate probability
function or joint ensemble moments. Thus, all random fields and functions in the stochastic flow equations depend
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not only on the space coordinatexxx, but also on the fictitious ‘coordinate’ξξξ in the probability space. Whereas spatial
moments are obtained through sampling in real space, ensemble moments require sampling in probability space.
In reality, only one ‘realization’ of an actual reservoir or aquifer exists, and it is common to invoke ergodicity hy-
pothesis which allows for interchanging ensemble and spatial moments. Ergodicity cannot be proven unless falling
under the purview of well-established ergodic theorems such as the law of large numbers. However, it has been
demonstrated by Yaglom [1] that ‘in any application, non-ergodicity usually just means that the random function
concerned is, in fact, an artificial union of a number of distinct ergodic stationary functions’.

Treating permeability of a porous medium as a random field leads to stochastic flow equations. Single phase
flows of incompressible fluids (such as water or oil), can be described by linear diffusion equations and have been
a subject of numerous stochastic analyses. Predicting flows of compressible fluids (e.g., natural gases) through
randomly heterogeneous porous media is more challenging due to nonlinearity of the governing equations, and to
the best of our knowledge there have been no attempts to do so stochastically.

In this paper, we employ the Kirchhoff transformation to linearize the governing equations for real gas flow.
Subsequent stochastic analysis is similar to that performed for flow of incompressible fluids. Localization of the
stochastically averaged flow equations, existence of upscaled (effective) permeability, and boundary and statistical
anisotropy effects are investigated.

2. Mathematical formulation

Consider steady-state laminar and isothermal flow of a real gas of constant composition through randomly
heterogeneous porous media,�. Such flow is described by the Darcy law and mass conservation

vvv(xxx) = − k(xxx)

µ(p)
∇p(xxx) xxx ∈ � (1)

∇ · [ρ(p)vvv(xxx)] + f (xxx) = 0 xxx ∈ � (2)

wherevvv is the macroscopic (Darcian) velocity,k the gas permeability of the medium,µ the gas viscosity,p the
pressure,f the (random) source term, andρ the gas density.

Equations (1) and (2) are supplemented by the equation of state

ρ(p) = 1

RT

p

Z(p)
(3)

whereR is the gas constant,T is the constant temperature, andZ(p) is the compressibility factor; and boundary
conditions

p(xxx) = P(xxx) xxx ∈ 0D (4)

−ρ(p)vvv(xxx) · nnn(xxx) = V (xxx) xxx ∈ 0N (5)

whereP(xxx) andV (xxx) are randomly prescribed head and mass flux on Dirichlet,0D, and Neumann,0N, boundary
segments whose union forms a boundary0 of the domain�, andnnn(xxx) is the unit outward normal to the boundary
0.

While permeabilityk exhibits discrete and continuous variations on a multiplicity of scales, it can at best be
measured at selected locationsxxxk inside flow domain�. Numerous field experiments (see, e.g., [2] and references
therein) have revealed that permeability of various natural formations can be viewed as a log-normal multi-variate
field. Sincek(xxx) is scale-dependent and random, so will be the pressure and fluxes. In other words, Eqs. (1)–(5)
constitute a system of nonlinear stochastic differential equations.
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3. Stochastic averaging

Direct stochastic averaging of Eqs. (1)–(5) would lead to the presence of ensemble means of some deterministic
functions of random argument,〈g(p)〉. It is common in stochastic analyses of unsaturated flow (which is described
by a similar set of nonlinear differential equations) to retain only the leading term in the Taylor expansions of these
functions, i.e.,〈g(p)〉 ≈ g(〈p〉). Such an approach does not seem to be quite satisfactory since the convergence of
such Taylor expansions cannot be either guaranteed or verified before the solutionp(xxx) of Eqs. (1)–(5) is found. In
this paper, we pursue an alternative approach which consists of linearizing Eqs. (1)–(5) prior to their averaging.

Substituting Eqs. (1) and (3) into Eqs. (2), (4) and (5), and applying the Kirchhoff transformation [3]

9(xxx) =
∫ p

−∞
s

µ(s)Z(s)
ds (6)

yields

∇ · [k(xxx)∇9(xxx)] + f (xxx) = 0 xxx ∈ � (7)

subject to the boundary conditions

9(xxx) = H(xxx) xxx ∈ 0D (8)

nnn(xxx) · [k(xxx)∇9(xxx)] = Q(xxx) xxx ∈ 0N (9)

whereH(xxx) is the Kirchhoff transform ofP(xxx), Q(xxx) = RT V (xxx), andf (xxx) = RT f (xxx).
For isothermal flow of an ideal gas,Z(p) ≡ 1, µ is constant, and one has 29 = p2. A similar treatment of the

equations describing flow of real gases in homogeneous porous media has been carried out by Al-Hussainy et al.
[4].

We represent random fields and functionsA as sums of their ensemble means〈A〉 and zero-mean perturbations
〈A′〉,

k(xxx) = 〈k〉 + k′(xxx) 〈k′(xxx)〉 ≡ 0 (10)

9(xxx) = 〈9(xxx)〉 + 9 ′(xxx) 〈9 ′(xxx)〉 ≡ 0. (11)

Taking the ensemble mean of Eqs. (7)–(9) yields

∇ · [〈k(xxx)〉∇〈9(xxx)〉 − rrr(xxx)] + 〈f (xxx)〉 = 0 xxx ∈ � (12)

subject to the boundary conditions

〈9(xxx)〉 = 〈H(xxx)〉 xxx ∈ 0D (13)

nnn(xxx) · [〈k(xxx)〉∇〈9(xxx)〉 − rrr(xxx)] = 〈Q(xxx)〉 xxx ∈ 0N (14)

where the residual fluxrrr(xxx) = −〈k′(xxx)∇9 ′(xxx)〉 is given explicitly [5] as the solution of an integral equation

rrr(xxx) =
∫

�

AAA(yyy,xxx)∇〈9(yyy)〉 dyyy +
∫

�

BBB(yyy,xxx)rrr(yyy) dyyy. (15)

Here the kernelsAAA andBBB are given by

AAA(xxx,yyy) = 〈k′(xxx)k′(yyy)∇xxx∇T
yyy G(xxx,yyy)〉 (16)
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BBB(xxx,yyy) = 〈k′(yyy)∇xxx∇T
yyy G(xxx,yyy)〉 (17)

whereG(xxx,yyy) is the random Green’s function associated with boundary-value problem (7)–(9). The kernelAAA is a
quadratic form, and the kernelBBB is a non-symmetric tensor. Evaluating these kernels requires some approximation
since they contain mixed ensemble moments of the random Green’s functionG. Nevertheless, the following important
properties of the averaged gas flow equations can be discerned: (i) ensemble average of permeability〈k〉 does not act
as an upscaled (effective) permeability; and (ii) the residual fluxrrr represents a nonlocal term (i.e., contains gradients
of the mean Kirchhoff transform∇〈9〉 at points other thanxxx) in the averaged flow equation (12). Therefore, except
for very special conditions, the averaged real gas flow equations are non-Darcian, and the upscaled (effective)
permeability does not generally exist. Nonlocality of the averaged flow equations for incompressible fluids has been
reported in [5–8].

Boundary-value problem (12)–(14) can be solved recursively [6] by expanding〈k〉 and〈9〉 in asymptotic series
in the varianceσ 2

Y of log-permeabilityY (xxx) = ln k(xxx). This formally limits our solution to mildly heterogeneous
porous media withσ 2

Y � 1. Available experimental data [2] show applicability of such an approach to a wide variety
of natural formations. Expanding the relevant terms in equations (12)–(14) yields the zeroth-order approximation

∇ · [KG(xxx)∇〈9(0)(xxx)〉] + 〈f (xxx)〉 = 0 xxx ∈ � (18)

〈9(0)(xxx)〉 = 〈H(xxx)〉 xxx ∈ 0D (19)

nnn(xxx) ·
[
KG(xxx)∇〈9(0)(xxx)〉

]
= 〈Q(xxx)〉 xxx ∈ 0N (20)

and the first-order approximation

∇ ·
[
KG(xxx)

(
∇〈9(1)(xxx)〉 + σ 2

Y (xxx)

2
∇〈9(0)(xxx)〉

)
− rrr(1)(xxx)

]
= 0 xxx ∈ � (21)

〈9(1)(xxx)〉 = 0 xxx ∈ 0D (22)

nnn(xxx) ·
[
KG(xxx)

(
∇〈9(1)(xxx)〉 + σ 2

Y (xxx)

2
∇〈9(0)(xxx)〉

)
− rrr(1)(xxx)

]
= 0 xxx ∈ 0N (23)

whereKG = exp(〈k〉) is the geometric mean of permeabilityk;

rrr(1)(xxx) =
∫

�

AAA(1)(xxx,yyy)∇〈9(0)(yyy)〉 dyyy (24)

AAA(1)(xxx,yyy) = KG(xxx)K(yyy)CY (xxx,yyy)∇xxx∇T
yyy 〈G(0)(xxx,yyy)〉 (25)

andCY (xxx,yyy) = 〈Y ′(xxx)Y ′(yyy)〉 is the covariance function ofY . Advantage of using our recursive approximations
is that the averaged quantities involved are relatively smooth functions defined on a coarse grid�. This makes it
possible to use standard numerical techniques, such as finite element methods, more efficiently [9].

4. Effective permeability

Averaged equations (18)–(23) can be localized under conditions of the mean uniform flow,∇〈9(xxx)〉 ≡
∇〈9(0)(xxx)〉 ≡ JJJ = constant(∇〈9(i)(xxx)〉 ≡ 0 for i ≥ 1). Then it follows from Eqs. (18), (21) and (24) that

qqq [1](xxx) = −kkk
[1]
eff(xxx)JJJ (26)
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whereqqq [1] ≡ qqq(0) +qqq(1) is the first-order approximation of mass fluxqqq = ρvvv, and the first-order approximation of
the effective permeability tensorkkk[1] ≡ kkk(0) + kkk(1) is given by

kkk
[1]
eff(xxx) = KG

[
1 + σ 2

Y

2

]
III − DDD(xxx) DDD(xxx) =

∫
�

AAA(1)(xxx,yyy) dyyy (27)

I being the identity tensor. In the context of flow of incompressible fluids, expression (27) has been studied by
Paleologos et al. [10] and Tartakovsky and Neuman [11].

The flow scenario described above can be realized by treating log-permeability fieldY as statistically homogeneous
(with constant mean〈Y 〉 and varianceσ 2

Y ), and taking� to be a box-shaped grid-block with lateral mean no-flow
boundaries and two constant head boundaries a distanceL1 apart. This results in mean uniform flow withJJJ =
(J1, 0, 0)T whereJ1 = [H2 − H1]/L1, andH1 andH2 are the Kirchhoff transforms of the constant heads on the
Dirichlet boundaries. The mean no-flow boundaries are separated by the distancesL2 andL3. By way of example,
we assume that the log-permeability field exhibits an anisotropic exponential covariance structure

CY (zzz) = σ 2
Y exp


−

√√√√ 3∑
i=1

z2
i

λ2
i


 zi = yi − xi (28)

wherezzz is a displacement vector,λi ’s are principal integral scales, and the principal directions of statistical anisotropy
are aligned with the box. The following analysis is due to Tartakovsky and Neuman [11].

4.1. Infinite statistically isotropic media

We start by considering the special case where the size of the box is large relative to any of the integral scales
λi so thatρi ≡ Li/λi are very large and mathematically infinite. For statistically isotropic media, anisotropy ratios
εi ≡ λi/λ1 = 1 (i = 1, 2, 3), and taking the limitρi → ∞ in Eq. (27) gives (ind dimensions)D11 = KGσ 2

Y /d

and

k
[1]
11

KG
= 1 + σ 2

Y

[
1

2
− 1

d

]
(29)

whereD11 andk11 ≡ keff,11 are the first principal components of the tensorsDDD andkkkeff , respectively. Hence,
the effective (upscaled) permeability for gas flow is given, up to first order inσ 2

Y , by the harmonic mean for
one-dimensional flow, the geometric mean for two-dimensional flow, and the arithmetic mean for three-dimensional
flow. This result is the same as that obtained by Neuman and Orr [5], Dagan [12] and King [13] for flow of
incompressible fluids.

4.2. Infinite statistically anisotropic media

In the special anisotropic case whereε2 = ε3 ≡ ε, taking the limitρi → ∞ in Eq. (27) yields (in 3 dimensions)

D11 = ε2

(1 − ε2)3/2

[
1

2
ln

(
1 + √

1 − ε2

1 + √
1 − ε2

)
−
√

1 − ε2

]
ε ≤ 1

D11 = 1
3 ε = 1

D11 = ε2

(1 − ε2)3/2

[
−π

2
+ arccot

(√
ε2 − 1

)
+
√

ε2 − 1
]

ε ≥ 1 (30)
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Fig. 1. Effect of box size on effective (upscaled) permeability. Horizontal line represents asymptote forρ → ∞.

From asymptotic expansions of lnx and arccotx one can see thatD11(ε) is continuous atε = 1, where it reduces
to the well-established isotropic value 1/3 of the previous section.

4.3. Boundary effects

To explore the effect of box size on the effective permeability, Eq. (27) is evaluated at the center of the box as a
function of the dimensionless box size 2ρ ≡ ρ1 = ρ2 = ρ3 [11]. One can see from Fig. 1 thatD11 increases rapidly
with 2ρ when the latter is small but then tends very slowly to its asymptotic value of 1/3.

5. Summary

We consider steady-state flow of real gases through bounded randomly heterogeneous porous media. Such flow
is described by nonlinear partial differential equation with random coefficient (medium’s permeability) subject to
randomly prescribed driving terms (source and boundary functions). Prior to stochastic averaging of the governing
equations, the problem is linearized by means of the Kirchhoff transformation. The linearized stochastic differen-
tial equations are similar to those used for describing flows of incompressible fluids in randomly heterogeneous
formations. Nonlocality of the averaged equations, their localization, and effective (upscaled) permeability are
investigated.
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